Unexpected formation of pyrrolo[1,2-a]quinoxaline derivatives during the multicomponent synthesis of pyrrolo[1,2-a]benzimidazoles

Alina Nicolescu a,b, Calin Deleanu a,b,*, Emilian Georgescu c, Florentina Georgescu c, Ana-Maria Iurascu b, Sergiu Shova b,d, Petru Filip a

a C. D. Nenitescu’ Centre of Organic Chemistry of the Roumanian Academy, Spl. Independenţei 202-B, RO-060023 Bucharest, Romania
b Research Center Oltchim, 1 Uzinei St., RO-240050 Râmnicu Vâlcea, Romania
c 'Petru Poni' Institute of Macromolecular Chemistry of the Roumanian Academy, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
d Institute of Chemistry, Academy of Sciences of the Republic of Moldova, Str. Academiei 3, MD-2028 Chişinău, Moldavia

A R T I C L E I N F O

Article history:
Received 23 September 2012
Revised 26 December 2012
Accepted 10 January 2013
Available online 16 January 2013

Keywords:
Pyrrolo[1,2-a]quinoxalines
Pyrrolo[1,2-a]benzimidazoles
Synthesis
1H, 13C and 15N NMR
Single crystal X-ray

The increasing number of pyrrolo[1,2-a]benzimidazole derivatives having applications in biology and pharmacology, 1-5 justifies interest in the development of efficient synthetic methods for these compounds.

Several synthetic routes have been reported for the synthesis of pyrrolo[1,2-a]benzimidazole derivatives.6-9 One of the most important methods involves the 1,3-dipolar cycloaddition reaction of benzimidazolium ylides with electron-deficient alkenes or alkynes.10-16 The classical multistep approach for the synthesis of pyrrolo[1,2-a]benzimidazoles, affording yields of up to 15%,10,11 starts with the preparation of benzimidazolium salts followed by their in situ conversion into benzimidazolium-N-ylides in the presence of a base and the dipolarophile. Improved yields have been reported when oxidant promoters such as CrO3 were used together with an organic base such as triethylamine.13

Our group has developed a one-pot synthetic strategy based on a consecutive quaternization, in situ generation of a heterocyclic N-ylide, 1,3-dipolar cycloaddition, and aromatization sequence.17-21 This is a three-component procedure starting with almost equimolar amounts of an N-heterocyclic compound, an α-bromocarboxyl derivative, and an electron deficient alkyne in the presence of an epoxide, which plays the role of both the reaction medium and acid scavenger. This proved to be a regiospecific, wide-in-scope synthesis, requiring simple reaction conditions and allowing final product separation through crystallization.

In the case of 1-benzylbenzimidazole, using 1,2-epoxybutane at reflux temperature, we obtained better yields of pyrrolo[1,2-a]benzimidazole derivatives. Thus, starting from 1-benzylbenzimidazole (1), phenacyl bromides 2a,b, and electron deficient alkenes 3a,b in 1,2-epoxybutane, we obtained pyrrolo[1,2-a]benzimidazole derivatives 5a,b in 68%, and 73% yields, respectively (Scheme 1).

The reaction was performed by mixing the components at reflux temperature for 24 h, followed by solvent evaporation and subsequent crystallization.

The reaction mechanism implies the formation of an intermediate benzimidazolium salt from 1-benzylbenzimidazole (1) and the phenacyl bromide 2, followed by the generation of a benzimidazolium-N-ylide by the action of 1,2-epoxybutane, and finally a 1,3-dipolar cycloaddition reaction of the intermediate benzimidazolium-N-ylide with the activated alkyne 3 to give the corresponding dihydroxyprolo[1,2-a]benzimidazole 4 as the primary cycloadduct. Finally, the pyrrolo[1,2-a]benzimidazole derivative 5 is obtained by spontaneous aromatization of the primary cycloadduct 4.

Surprisingly, if the same reactions were carried out in propylene oxide or 1,2-epoxybutane at room temperature for 60 h, almost...