

A study on electrospray mass spectrometry of fullerenol $C_{60}(OH)_{24}$

Mihaela Silion¹, Andrei Dascalu^{*1}, Mariana Pinteala^{*1}, Bogdan C. Simionescu^{1,2} and Cezar Ungurenasu¹

Full Research Paper

Address:

¹Petru Poni Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, Aleea Grigore Ghica Voda 41A, Iasi 700487, Romania and ²Department of Natural and Synthetic Polymers, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania

Email:

Andrei Dascalu* - idascalu@icmpp.ro; Mariana Pinteala* - pinteala@icmpp.ro

* Corresponding author

Keywords:

electrospray; fullerenol $C_{60}(OH)_{24}$; mass spectrometry

Beilstein J. Org. Chem.

doi:

Received: 05 March 2013 Accepted: 31 May 2013

Published:

Associate Editor: H. Ritter

© Silion et al; licensee Beilstein-Institut. License and terms: see end of document. Open Access

Abstract

Full characterization of fullerenol $C_{60}(OH)_{24}$ by HPLC ESI-MS in negative and positive ionization modes was achieved. Fragmentor voltage and capillary voltage were optimized in order to obtain a good signal stability and the best peak intensity distribution for the fullerenol $C_{60}(OH)_{24}$ in both negative and positive modes. While the predominant base peak observed for $C_{60}(OH)_{24}$ in the negative ionization mode was $[M-H]^-$ at m/z 1127, those observed in the positive mode were multiply charged $[M-H_2O+4H]^{4+}$ at m/z 279 and $[M-12H_2O+2NH_3+6H]^{6+}$ at m/z 158.

Introduction

Because of their potential for chemical tunability and exciting range of biological activities as glutamate-receptor antagonists [1] and antiproliferative [2,3], neuroprotective [4-7], and anticancer agents [8-13], polyhydroxylated [C_{60}]fullerenes, $C_{60}(OH)_x$, have received much attention in recent years. However, to the best of our knowledge, except for the compositionally and structurally well characterized $C_{60}(OH)_{24}$, prepared by alkaline hydrolysis of $C_{60}Br_{24}$ [14,15], most of these fullerenols are not pure $C_{60}(OH)_x$, but a complex mixture of

products with an average composition of $C_{60}(OH)_{x-y}$, $C_{60}O_x(OH)_v$ [16-19] or $C_{60}(OH)_x(ONa)_v$ [20].

Therefore, the HPLC separation and accurate measurement of the molecular weight for structure characterization by electrospray ionization mass spectrometry (ESI-MS) have become essential for fullerenol research. Fullerenols $C_{60}(OH)_{18-44}$ are very small neutral molecules with the highest density of hydroxy groups on a given particle surface (up to $10.7 OH/nm^2$)